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finite-difference schemes for the Stokes problem
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SUMMARY

In this paper we demonstrate that some well-known finite-difference schemes can be interpreted within the
framework of the local discontinuous Galerkin (LDG) methods using the low-order piecewise solenoidal
discrete spaces introduced in (SIAM J. Numer. Anal. 1990; 27(6): 1466–1485). In particular, it appears that it
is possible to derive the well-known MAC scheme using a first-order Nédélec approximation on rectangular
cells. It has been recently interpreted within the framework of the Raviart–Thomas approximation by
Kanschat (Int. J. Numer. Meth. Fluids 2007; published online). The two approximations are algebraically
equivalent to the MAC scheme, however, they have to be applied on grids that are staggered on a distance
h/2 in each direction. This paper also demonstrates that both discretizations allow for the construction of
a divergence-free basis, which yields a linear system with a ‘biharmonic’ conditioning. Both this paper
and Kanschat (Int. J. Numer. Meth. Fluids 2007; published online) demonstrate that the LDG framework
can be used to generalize some popular finite-difference schemes to grids that are not parallel to the
coordinate axes or that are unstructured. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This study was inspired by the paper of Kanschat [1], which discusses the interpretation of one
of the earliest schemes used for the discretization of the Stokes equations, the MAC scheme, as a
discontinuous Galerkin (DG) method. In that paper, it was shown that using a proper quadrature,
the first-order local discontinuous Galerkin (LDG) method of Cockburn et al. [2] can be made
algebraically equivalent to the MAC scheme. This method is based on the well-known Hdiv-
conforming Raviart–Thomas RT0 element. In fact, the analogy between the RT0 and the MAC
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308 P. D. MINEV

spatial discretization has been pointed out by Girault and Lopez [3] who interpreted the MAC
scheme as a mixed Hdiv-conforming finite element method. However, the DG setting seems to
make the analogy more direct. The MAC method has also been interpreted and analyzed as a
co-volume method in [4, 5], and as a classical continuous finite element method on staggered
quadrilateral grids in [6].

In this paper we use discontinuous approximations based on the piecewise solenoidal discrete
spaces introduced in [7] (see also [8]). We demonstrate that the piecewise-constant approximation
for the velocity on a uniform rectangular grid and the C0 piecewise linear approximation for the
pressure on a uniform triangular grid produced by subdividing the rectangles with their diagonals
yield a linear system equivalent to the system resulting from a finite-difference scheme proposed
in [9, 10] (we denote it by KF). This finite-difference scheme is O(h2) consistent approximation
of both the Laplace operator and the divergence/gradient operators. The latter scheme is also
equivalent to the scheme proposed in [11], which we denote by BCG (up to the treatment of
the boundary conditions). The higher-order locally solenoidal approximations are related to the
so-called Nédélec spaces (see [12]) which are H curl-conforming and are used mostly for the
discretization of the Maxwell equations. The first-order approximation for the velocity and the C0

piecewise bilinear approximation for the pressure on a uniform rectangular grid yield a scheme that
can be made algebraically equivalent to the MAC scheme. It is remarkable that the discretization
of the Laplace operator is O(h4) consistent and it is the discretization of the gradient/divergence
that reduces the overall consistency to second order. Thus, both schemes are O(h2) accurate (in a
discrete maximum norm) and so the solution can be re-interpolated to obtain a fully second-order
(in an L2 norm) approximation. Standard theory with such interpolation spaces cannot be expected
to yield that high convergence rates; therefore, this hints at a possible superconvergence on uniform
grids. Note that the first scheme does not satisfy the inf–sup stability condition. However, the
pressure space contains only one spurious checkerboard mode, which can be easily eliminated.

These two DG discretizations can be used to generalize the corresponding finite-difference
methods to unstructured grids or grids with non-matching nodes. The generalization of the first
scheme to 3D is straightforward. The generalization of the second scheme to 3D involves degrees
of freedom for the velocity on the edges rather than faces of the elements and follows the same
idea as the generalization of the Nédélec elements.

2. THE DG SETTING

For simplicity of the presentation, we consider only the discretization of the steady Stokes equations
on a uniform rectangular grid Gh with a stepsize h in �=(0,1)×(0,1) with Dirichlet boundary
conditions on the entire domain boundary. Using various numerical fluxes, the schemes can be
easily extended to the Navier–Stokes equations and generalized to non-rectangular domains. As
already mentioned above, the discretization spaces for the velocity are constructed following the
idea in [7].

2.1. Scheme 1

We will start with the scheme based on a piecewise-constant approximation for the velocity.
The discrete velocity space is, therefore, defined as Vh ={(uh,vh)T∈L2(�);uh =const,vh =
const|s∀s∈Gh}. It is clearly spanned by the lowest-order piecewise divergence-free functions
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introduced in [7]. With this choice for the velocity discretization, the most natural choice for
the pressure is a continuous approximation. We used pyramidal basis functions that are linear
on each elemental edge and piecewise linear in each quadrilateral element. The basis function
for the pressure associated with a given node (i+ 1

2 , j+ 1
2 ) is represented in Figure 1. Since the

velocity is piecewise constant, we have to employ the DG apparatus in order to discretize the
Laplacian. Note that if we integrate by parts the usual Galerkin divergence operator, we will
obtain a consistent discretization for the divergence because the pressure approximation is in H1.
To this end, we use the following bilinear forms for the discretization of the Laplacian (see [2]):

ah(uh,vh)=− ∑
e∈EI

k

h
[[uhn]][[vhn]] ∀uh,vh ∈Vh (1)

where EI is the set of all internal elemental edges and [[whn]]=w+
h n

++w−
h n

− denotes the jump of
the corresponding quantity in the normal to this edge direction. Note that this follows exactly from
the bilinear forms for the Laplacian used in the methods of [2, 7] in the present case of piecewise
constant basis for the velocity and provided that the boundary conditions on both components of
the velocity are imposed strongly (see Remark 2.1). The divergence (and subsequently the gradient)
operator is defined by

bh(uh,qh)=−
∫

�
uh∇qh d� (2)

As we already mentioned, this DG formulation is equivalent to two finite-difference schemes
proposed in the past: the KF and BCG schemes. The difference occurs only around the boundary of
the domain and once the equivalence with one of the schemes is shown, it is straightforward to do
the same for the other scheme with a proper imposition of the boundary conditions (see Remark 2.1).
This is why we will show only the equivalence with the KF scheme. Suppose that we have N
elements in the grid in each direction and denote the centroidal values of the x- and y-components
of the velocity by ui, j ,vi, j , i, j =1, . . . ,N . Suppose also that uh =∑N

i, j=1(ui, j ,vi, j )
T�i, j with �i, j

i,j i+1,j

i,j+1 i+1,j+1

Figure 1. A pressure basis function in an internal pressure node i+ 1
2 , j+ 1

2 ; the
velocity nodes are marked with ◦.
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being the characteristic function of the square element centered at point i, j . Then (1) yields, for
k=1, the following discretization for the Laplacian of the x-component of the velocity at point
i, j (we clearly need to take vh =(�i, j ,0)

T):

ah(uh,vh)=ui+1, j +ui−1, j +ui, j+1+ui, j−1−4ui, j (3)

This, up to the factor h2, is exactly the five-point stencil finite difference used in the KF scheme.
The factor h2 appears because the right-hand side vector will contain an integral of the source
term. Equation (2) yields the following finite-difference approximation of the divergence at point
(i+1/2, j+1/2) (we need to choose qh to be the function shown in Figure 1):

bh(uh,qh)= h

2
(ui+1, j+1−ui, j+1+ui+1, j −ui, j +vi, j+1−vi, j +vi+1, j+1−vi+1, j ) (4)

This is clearly, up to a factor h2, the second-order consistent approximation for the divergence
used in KF. The approximation for the x-component of the pressure gradient at point (i, j) is given
by

h

2
(pi+1/2, j+1/2− pi−1/2, j+1/2+ pi+1/2, j−1/2− pi−1/2, j−1/2) (5)

which is clearly a second-order finite-difference approximation to the gradient. Unfortunately,
this combination of velocity/pressure approximation is not inf–sup stable. Indeed, the averaging
operator allows to have a non-zero (non-constant) pressure with a zero gradient, however, it is
easy to see that there is only one global spurious checkerboard mode, and it is not difficult to
filter it out. It is also clear that the piecewise-constant approximation for the velocity cannot yield
higher than first-order accuracy in the L2 norm. On the other hand, the equivalent finite-difference
scheme is second-order accurate, which indicates a pointwise superconvergence of the solution.

Remark 2.1
In case of the KF scheme, the velocities are located in the vertices of a regular grid (ih, jh) and
the pressure is located in the cell centers ((i+ 1

2 )h, ( j+ 1
2 )h). In order to reproduce algebraically

the linear system of the KF discretization from the DG formulation, we need to place the vertices
of the finite elements in the pressure nodes so that the velocity nodes are placed in the centroids
of the finite elements. In addition, in order to impose the velocity boundary conditions strongly,
we need to align the centroids of the first layer of finite elements around the boundary � with
the boundary nodes and extend the pressure nodes with one layer of ‘ghost’ nodes around each
portion of the boundary (see Figure 2). The outside layer of ‘ghost’ pressure nodes is not needed to
compute the pressure gradient (and to test the incompressibility constraint) because the velocity at
the boundary velocity nodes is prescribed, i.e. the pressure gradient in these nodes is not required
for its computation.

The BCG scheme places the velocity nodes in the cell centers; therefore, in order to reproduce it
algebraically with the DG formulation, it is necessary to use the finite-difference cells as DG finite
elements. Then, it imposes the Dirichlet boundary conditions by introducing a layer of ‘ghost’
velocity points around each portion of the boundary � and using an averaging operator. This can
be reproduced in the DG formulation by introducing a layer of finite elements around each portion
of the boundary (see Figure 2). Then, the newly introduced velocity degrees of freedom can be
determined from the condition that the linear interpolant in the x-direction for the left and right
portions of the boundary and in the y-direction for the top and bottom portions of the boundary
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Figure 2. The KF (left) and BCG (right) grids at the lower left corner of the domain. The DG finite
element grid is marked by a solid line and the finite-difference grid for the velocity is marked by a dashed

line. The velocity nodes are marked by ◦ and the pressure nodes by •.

satisfies the boundary conditions. This defines essentially a second-order averaging operator. Again,
the additional layer of ‘ghost’ pressure degrees of freedom is not used because the pressure gradient
in the additional layer of velocity nodes is not needed. Of course, the DG formulation offers also
the alternative of a weak imposition of the boundary conditions as discussed by Kanschat [1] in
case of the MAC scheme.

2.2. Scheme 2

In order to construct the other scheme, we need to use the higher degree divergence-free polynomial
vectors introduced in [7]. On the standard rectangle [0,1]2, they are spanned by (1,0)T, (0,1)T,
(y,0)T, (0, x)T and (x,−y)T. It appears that if we choose only the subspace spanned by (y,0)T,
(1− y,0)T, (0, x)T, (0,1−x)T, we obtain the local representation of the Nédélec space of first
kind on a rectangle. Therefore, the fifth local function is not necessary to obtain a consistent
approximation of functions in H curl. Thus, the velocity approximation is sought in

Vh ={vh ∈H curl;vh |s ∈span{(y,0)T, (1− y,0)T, (0, x)T, (0,1−x)T},∀s∈Gh} (6)

In this space, the x-component of the velocity is cellwise constant (and discontinuous) in the
x-direction and cellwise linear (and continuous) in the y-direction. The unknowns associated with
the approximation in it are the average values of the tangential components of the velocity on each
edge of a rectangular cell. Since we consider an uniform grid, it is quite clear that in the dual
grid produced by connecting the centroids of the rectangles of the Nédélec grid, these unknowns
will play the same role as the unknowns of the MAC scheme on the dual grid, i.e. they are
normal velocities in the edge midpoints of the dual rectangles. Thus in some sense the present
approximation is ‘dual’ to the MAC scheme. The pressure space that is usually associated with
the Nédélec basis is continuous, and the weak form of the divergence operator is given by (2). In
this case, we use the usual piecewise bilinear Q1 approximation

Qh =
{
qh ∈H1;qh |s ∈span(1, x, y, xy),∀s∈Gh;

∫
�
qh =0

}
(7)
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312 P. D. MINEV

The functions used to construct the velocity basis have a prismatic shape and they are equal to 1
on the entire edge with which they are associated, and to 0 on the two neighboring edges parallel
to it. In terms of the notations in Figure 3, the basis function �i, j−1/2(y) associated with the

edge centered at i, j− 1
2 is linear on each cell and equal to one along the edge between the points

i, j−1 and i, j . It also equals 0 along the edges from i−1, j−1 to i−1, j , and from i+1, j−1
to i+1, j as well as anywhere outside the rectangles centered at i− 1

2 , j− 1
2 and i+ 1

2 , j− 1
2 (see

Figure 3). On vertical edges, these functions approximate the vertical components of the velocity
and on horizontal edges they approximate the horizontal component. Hence, the velocity in the
cell centered at i− 1

2 , j− 1
2 is given by

u(x, y)|i−1/2, j−1/2=
[
ui−1/2, j−1�i−1/2, j−1(y)+ui−1/2, j�i−1/2, j (y)

vi−1, j−1/2�i−1, j−1/2(x)+vi, j−1/2�i, j−1/2(x)

]
(8)

Since the basis for the velocity is no longer cellwise constant, (1) should be augmented as
follows (see [2]):

ah(uh,vh)= ∑
s∈Gh

∫
s
∇uh :∇vh− ∑

e∈EI

k

h
[[uhn]][[vhn]]h ∀uh,vh ∈Vh (9)

If we now choose vh =(�i−1/2, j (y),0)
T and k=1, this bilinear form yields the following

approximation to the Laplacian of the horizontal velocity component at i−1/2, j :

ah(uh,vh) = 1
6 (−20ui−1/2, j +4(ui−3/2, j +ui+1/2, j +ui−1/2, j−1+ui−1/2, j+1)

+(ui−3/2, j−1+ui+1/2, j−1+ui+1/2, j+1+ui−3/2, j+1)) (10)

i,j
i–1,j

i,j–1

i,j+1

i+1,j

Figure 3. The velocity basis function corresponding to the vertical velocity component at
i, j− 1

2 . Pressure nodes are marked with �, the horizontal velocity nodes are marked with ◦
and the vertical velocity nodes with •.
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which is a fourth-order accurate finite-difference scheme. It is also an elementary exercise to
compute the finite-difference stencil for the approximation of the divergence. Choosing qh =
qi, j (x, y) in (2), we obtain

bh(u,qi, j ) = h

6
(4(ui+1/2, j −ui−1/2, j +vi, j+1/2−vi, j−1/2)+ui+1/2, j+1

−ui−1/2, j+1+ ui+1/2, j−1−ui−1/2, j−1+vi−1, j+1/2

−vi−1, j−1/2+vi+1, j+1/2−vi+1, j−1/2) (11)

This is a finite-difference approximation to the divergence at i, j in which the x and y central
difference approximations to the first derivatives are averaged according to the Simpson’s rule in
the direction orthogonal to the direction of the derivative. Therefore, this is a O(h2) consistent
approximation for the divergence. Subsequently, the pressure gradient approximation is also O(h2)
consistent. If both components of the boundary condition are imposed weakly, then ∇Qh ⊂Vh
and it is easy to show (see [13, p. 179]) that this pair of velocity/pressure approximation spaces
satisfies the inf–sup stability condition and thus the pressure computed with the corresponding
finite-difference scheme does not suffer of spurious modes. If the boundary condition is imposed
strongly, the pressure stability cannot be guaranteed. The stencil of this finite-difference scheme is
larger than the stencil of the classical MAC scheme. However, using the trick of [1] (see Lemma
4.1 of [1]), the finite-difference approximation of Laplacian (10) can be reduced to the classical
five-point approximation. The divergence approximation (11) can be reduced to the classical central
difference approximation of the MAC scheme using an inexact trapezoidal integration in each
direction to approximate the integral in (2), which yields

b̂h(u,qi, j )=h(ui+1/2, j −ui−1/2, j +vi, j+1/2−vi, j−1/2) (12)

where b̂h denotes the approximation to bh obtained with the inexact trapezoidal quadrature rule.
Note that both finite-difference approximations of the divergence, (11) and (12), have the same
O(h2) consistency. However, the pressure gradient discretization that follows from (12) has a trivial
null space; therefore, the pressure approximation is guaranteed to be stable. The scheme comprised
by (10) as a discretization of the Laplacian and (12) (or its transposed) as a discretization of the
divergence (or the gradient) operators is algebraically equivalent to the scheme that results from
the divergence-free DG method discussed by Kanschat [1], which is based on the lowest-order
Raviart–Thomas (RT0) quadrilaterals, however applied on the dual grid. From the approximation
point of view, however, the two approaches are quite different. The first important difference is
that the Nédélec approximation is H curl conforming; therefore, it can be used as a conforming
approximation for the Stokes problem in the following non-standard formulation:

−∇×∇×u−∇ p = f in �

∇·u = 0 in �

u = 0 on ��

(13)

It is obtained by applying the Helmholtz decomposition ∇2u=∇∇·u−∇×∇×u to the usual form
of the Stokes problem and taking into account the incompressibility constraint. The weak
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formulation associated with this problem reads: Find u∈H curl
0 (�),u.n|� =0 and p∈H1(�),

∫
� p=

0 s.t.

(∇×u,∇×v)+(∇ p,v)=(f,v) ∀v∈H curl
0 (�), v.n|� =0

−(∇q,u)=0 ∀q∈H1(�) s.t.
∫

�
q=0

(14)

It is clear that the solution of the standard Stokes problem

∇2u−∇ p = f in �

∇·u = 0 in �

u = 0 on ��

(15)

satisfies (13) but the converse is not necessarily true. The solution of (13) satisfies (15) only if
it is regular enough and so, it is a kind of a generalization of the Stokes problem. Note, that if
applied to (13) the Nédélec approximation is fully conforming. However, the strong imposition
of the normal component of the velocity boundary condition on to the Nédélec approximation
space is non-trivial. One possibility is to use a grid similar to the grid of the KF scheme (see
Figure 4) and slightly modify the basis in the elements intersected by the boundary. Let us consider
as an example the element in Figure 4 whose centroid has integer coordinates (1,0). Then, the
imposition of the normal components of the boundary condition on the nodes ( 12 ,0) and ( 32 ,0)
is straightforward. The tangential boundary condition can be imposed strongly on the velocity
space if the horizontal component of the velocity is spanned by �1,1/2−�1,−1/2. If the velocity
boundary condition is imposed strongly, then the divergence operator in (14) should be computed
with an inexact quadrature, as discussed above, in order to guarantee the inf–sup stability of
the formulation. A possible alternative is to impose the boundary conditions weakly (see [1] for
example) and in such case the pressure gradient is spanned by the velocity basis and therefore the
inf–sup stability argument of [13] applies.

Γ

1

0

10

Γ

Figure 4. An example of a finite element grid around the lower left corner of the domain, which can
be used for a strong imposition of both components of the velocity boundary condition; the horizontal

velocity nodes are marked with ◦ and the vertical velocity nodes with •.
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The other difference between the Nédélec and Raviart–Thomas approximations is that the
advection terms in the full Navier–Stokes equations must be treated differently. The normal traces of
the Nédélec approximant are discontinuous across the element edges, which requires to incorporate
a stabilization flux, e.g. a Godunov flux, in the discretization. The RT0 approximant is essentially
continuous in the normal direction, and it can be used to build a pointwise divergence-free velocity
as proposed in [2].
Remark 2.2
Since the discretization of Laplacian (10) is fourth-order consistent and the discretizations of
divergence (11) or (12) are second-order consistent, it can be expected that Scheme 2 is supercon-
vergent for both the velocity and the pressure provided that the normal component of the boundary
condition is imposed properly. For various ways to improve the boundary condition discretization,
the reader is referred to [14, pp. 151–153].

2.3. Divergence-free basis

The reduced approximation to divergence (12) allows for an easy construction of a divergence-free
basis. Consider the cell centered at i+ 1

2 , j+ 1
2 (see Figure 3). Then the following function

xi+1/2, j+1/2=
[

�i+1/2, j

0

]
+

[
0

�i+1, j+1/2

]
−

[
�i+1/2, j+1

0

]
−

[
0

�i, j+1/2

]
(16)

satisfies b̂h(xi+1/2, j+1,2,qi+k, j+l)=0, where k, l=0,±1. It is clearly a linear combination of
Nédélec basis functions. According to the Euler formula, the number of cells equals the difference
in the number of edges and the number of nodes in the grid minus 1. Since with each cell we can
associate exactly one such divergence-free function, the algebraic system that follows from the
discretization of the Stokes equations with this basis must be equivalent, up to the treatment of
the normal component of the boundary conditions, to the system produced by first approximating
the momentum equation with the Nédélec basis (the number of equations equals the number of
edges); then, explicitly resolving each of the equations of the reduced incompressibility constraint
(12) (the number of equations equals the number of nodes minus one). The boundary conditions
for the new degrees of freedom associated with the divergence-free basis can be imposed strongly
by introducing an additional layer of cells on the outside of the boundary. Then, the tangential
component of the boundary condition is imposed in the midpoint of each boundary edge of a cell
and the normal component is imposed in the boundary vertices. In case of domains that are not
simply connected, the divergence-free approach is more complicated and may require the use of
non-local basis functions (see, for example, [15, p. 309]).

Similar to other discretizations based on a divergence-free approximation (see, for example,
[16]), numerical results suggest that the resulting linear system has a condition number of the order
of O(h−4), which corresponds to a biharmonic problem. Nevertheless, the size of the system is
much smaller and, thus, this approach is not entirely ruled out by the relatively bad conditioning.
It could be particularly efficient in the case of the unsteady Navier–Stokes equations at high
Reynolds numbers because the conditioning of the system in such case can be expected to be
better than O(h−4) (closer to O(h−2)). Moreover, it is possible to design efficient preconditioners
of a mutigrid type for example.
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Remark 2.3
The construction of a 3D divergence-free basis is a little more involved and can be done similarly
to the one done for the non-conforming Crouzeix–Raviart element. The reader is referred to [15]
and the references therein for the latter approach.

Remark 2.4
Note that a similar divergence-free basis can be constructed for the RT0 method of [1]. While
in (16), the basis is comprised by the sum of all (tangential) basis functions on the edges of a
given element (taken in a anti-clockwise direction), the RT0 basis requires to take the sum of all
the (normal) basis functions corresponding to all edges connected to a given node (taken in an
anti-clockwise direction).

3. CONCLUSIONS

The main conclusion of this paper is that three well-known finite-difference schemes can be
produced using a piecewise divergence-free approximation within the framework of the LDG
method. This analogy allows for an easy generalization of these schemes to unstructured grids or
grids whose edges are not parallel to the coordinate axes. It also allows to construct finite-difference
schemes on grids with non-matching nodes. The approximation with first-degree polynomial piece-
wise divergence-free vectors can be made algebraically equivalent to the MAC scheme, and there-
fore to the lowest-order Raviart–Thomas approximation, if employed on a dual grid obtained by
connecting the centroids of the MAC cells. In fact, from approximation standpoint it is equivalent
to the lowest-order Nédélec approximation on quadrilaterals. The standard finite element theory
does not yield proper error estimates for these schemes and one possibility could be to obtain a
superconvergence result for the nodal values of the solution and then use it to obtain optimal error
estimates.

The method based on the Nédélec approximation allows for an easy construction of a divergence-
free basis, which can be used for the discretization of both the Stokes problem and the time-
harmonic Maxwell equations at vanishing wave numbers. The numerical evidence confirms that
the matrix resulting from this basis has a biharmonic conditioning, however, the size of the linear
system is significantly smaller than the original system. It is also positive definite, as opposed to the
indefinite saddle-point system resulting from the traditional approximation in primitive variables.
Thus, it can be advantageous to use directly the divergence-free basis, particularly in the case of
high Reynolds number flows. A similar idea can be applied to develop a divergence-free basis from
the 2D Raviart–Thomas element in the context of the scheme developed in [17]. The development
of a divergence-free basis in 3D in both the Nédélec and Raviart–Thomas cases is more involved
but certainly possible. There is no much done in this direction and it is probably worth exploring
the possibility to design efficient preconditioners for the resulting linear systems.
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